PFC meeting @UCSD, Feb. 28 - Mar. 2, 2006 #### Be and C mixed material studies ## Parametric studies on carbon chemical erosion mitigation dynamics in Be seeded deuterium plasmas PISCES — D. Nishijima, M.J. Baldwin, R.P. Doerner and R. Seraydarian Center for Energy Research, University of California at San Diego, USA ### In ITER strike point region, strong interaction between Be and C is anticipated PISCES - - Previous results from PISCES-B; Carbon erosion is reduced by Be impurity in the plasma. - Next questions: - How quickly is carbon erosion suppressed by Be layers formation? - What are the important parameters responsible for carbon erosion mitigation time (protecting Be layer formation time)? ### PISCES-B allows to expose a sample to Be seeded plasma **PISCES** - The concentration of Be ion within the plasma column, measured with absolutely calibrated spectroscopic system, can be controlled by varying the temperature of the oven. - Axial profile of CD band emission is monitored to characterize carbon chemical erosion. Be ### Small amount of Be impurity in the plasma suppresses carbon chemical erosion **PISCES** CD band intensity is decreased with Be injection. Carbon chemical erosion is reduced. Decay rate of CD band is used to measure Be surface coating time. ## XPS analysis shows formation of beryllium carbide (Be₂C), responsible for carbon chemical erosion mitigation PISCES - - XPS analysis of Be on C sample surface to examine chemical binding of elements - After Be seeding D-plasma exposure, - A carbidic peak appears and a graphitic peak disappears in C 1s spectra. - Also in Be 1s spectra, a carbidic peak emerges. - Carbide forms more readily at higher surface temperature Unexposed ATJ graphite target Rough and porous surface (typical of machined graphite) D plasma exposure with no Be D ion fluence $\sim 2x10^{26}$ m⁻², T_s ~ 600 K Cone like appearance (chemical erosion) D/Be mixture plasma exposure D ion fluence ~ 1.2x10 26 m $^{-2}$, BeII/n $_{\rm e}$ ~ 0.1 %, T $_{\rm s}$ ~ 600 K Smoother surface (sub-micron level roughness), due to deposition of Be **PISCES** - I_{Dγ}: To monitor background plasma change - $I_{Bel}/I_{D\gamma}$: To monitor Be injection - $I_{CD}/I_{D\gamma}$ (near)- $I_{CD}/I_{D\gamma}$ (far): CD band intensity far from the target is subtracted from that near the target to eliminate changes in CD band originated from wall C. n_{Be+} from I_{BeII(467.3nm)} # Parametric studies on CD band decay time, in other words, protecting Be layer formation time **PISCES** #### Dependences on: - Be ion concentration (c_{Be+}) - Incident ion energy (E_i) - Surface temperature (T_s) - Incident ion flux (Γ_i) - Scaling expression (c_{Be+} , E_i , T_s , Γ_i) - Scan c_{Be+} while keeping other parameters, E_i , T_s and Γ_i constant as much as possible. - Fit of power function, $\tau_{CD} = \alpha \ c_{Be+}^{\ \beta}, \ gives$ $\alpha = 1.27 \times 10^{-3}, \ \beta = -2.07,$ showing relatively strong dependence. - Scan each parameter, E_i, T_s and Γ_i, while keeping others ~constant - Derive τ_{CD} at $c_{Be+} = 10^{-3}$ by assuming $\beta = -2.0$ in power law $\tau_{CD} = \alpha c_{Be+}^{\beta}$ to compensate c_{Be+} dependence. - A power function fit reveals τ_{CD} is nearly proportional to E_i . - At higher incident energy, Be deposited on C target can be more readily sputtered before Be₂C is formed, resulting in longer τ_{CD}. - At a higher surface temperature T_s of \sim 950 K, τ_{CD} is shorter than that at $T_s \sim$ 600 K by a factor of \sim 20. - Quicker formation of beryllium carbide (Be₂C) at higher T_s. - The parameter β in $\tau_{CD} = \alpha$ c_{Be+}^{β} at $T_s \sim 950$ K is nearly the same as that at $T_s \sim 600$ K. - \Rightarrow The same trend with respect to c_{Be+} . ### τ_{CD} has possibly a very weak dependence on incident ion flux **PISCES** - At a lower incident ion flux of ~ $1x10^{22}$ m⁻²s⁻¹, τ_{CD} is found to be approximately 2.5 times smaller than that at Γ_{i} ~ $3x10^{22}$ m⁻²s⁻¹. - However, higher T_s can lead to shorter τ_{CD} . - Again, the parameter β is about -2. ### τ_{CD}^{exp} obey the scaling law well; τ_{CD}^{scale} [s] = 1.1e-7 $c_{Be+}^{-1.85}$ $E_i^{1.0}$ $\Gamma_i^{-0.5}$ exp(4.7e3/ T_s) **PISCES** - Weak negative power law dependence on Γ_i . - At higher flux, redeposition fraction of Be is increased, leading to shorter τ_{CD} . - Extrapolation to ITER* $$\begin{cases} c_{Be+} = 0.05, \ E_i = 20 \ eV \\ T_s = 1200 \ K, \ \Gamma_i = 10^{23} \ m^{-2} s^{-1} \end{cases}$$ $$\Rightarrow$$ $\tau_{CD} \sim 9$ msec (<< 1 sec) Protecting Be layers can be formed between ELMs. *G. Federici et al., JNM 266-269 (1999) 14. - Small beryllium concentration in the plasma suppresses carbon chemical erosion. - XPS analysis shows beryllium carbide (Be₂C) layer is formed on a carbon sample after Be seeding deuterium plasma exposure with the surface temperature above 450 K. - Parametric studies on carbon chemical erosion mitigation dynamics reveal the following dependences; Strong Surface temperature exp(4.7e3/T_s) (600 K - 970 K) Weak Be concentration $c_{Be+}^{-1.9}$ (3x10⁻⁴ - 1x10⁻²) Incident ion energy E_i^{1.0} (15 - 85 eV) Incident ion flux $\Gamma_i^{-0.5}$ (1-4.5x10²² m⁻²s⁻¹) • More work is still needed at higher T_s , higher E_i and higher Γ_i .